GreenLeaf Energy Group
  • About
  • Partners
  • Contact
  • Blog

3D Printing Could Turn Space-Based Solar Power into a Reality

1/11/2014

0 Comments

 
Picture
SpiderFab creates carbon fibre truss framework.

By Joao Peixe | Mon, 02 December 2013 22:

Space-based solar power (SBSP) offers many advantages over Earth-based solar, yet the main obstacle in its development is the cost of sending up the solar panels into orbit. 3D printing may well be able to slash these installation costs and therefore make SBSP a much more viable energy source.
3D printing has been developed at a fast pace in recent years as scientists find more ways to use the technology. It is thought that by sending up special 3D printers into space to manufacturer the solar panels in orbit, the installation costs can be drastically reduced, compared to sending up pre-made solar panels.
Rob Hoyt, the CEO and Chief Scientists at Tethers Unlimited Inc. (TUI), explained to GreenTechSolar that “the overall vision is to create a ‘satellite chrysalis’ with compact, durable ‘software DNA’ assembly instructions, and the ability to fabricate space system components in-orbit instead of building them on the ground.”


Related article: New Efficient Materials Promise a Photovoltaic Revolution
TUI’s product, the SpiderFab 3D robotic printer, has already been awarded to sets of funding from NASA via its Innovative Advanced Concepts program. The initial $100,000 allowed them to prove the technical feasibility and value of the technology to such a degree that they were awarded another $500,000 to continue developing the idea. Hoyt said that “our analysis shows we can get orders of magnitude improvement in the stowed volume and mass of space systems.” He believes that sending compact materials into space instead of bulky solar panels “could reduce stowed volume tenfold and mass by 50 percent to 80 percent.


Related articles: Ceramic Converter Tackles Solar Cell Problem
http://media.smh.com.au/technology/tech-talk/scientists-print-flexible-solar-panels-4277134.html

3-D printing and robotic construction of components in-orbit would allow a smaller, less expensive launch rocket that will “improve performance per cost by orders of magnitude.” TUI has already completed a design analysis for a SpiderFab that would be able to manufacture a 300kW solar installation in space, and confirmed that such a process would indeed reduce stowed volume by 50% and total mass by 80%. Once the SpiderFab is sent up into orbit, the ‘Trusselator’ would 3D print a carbon fibre truss structure, and then robotically assemble it into a high-performance framework to provide the support system for the solar panels. Another unit would then fix a membrane onto this framework structure, made out of either thin-film PV materials, or a reflective surface, depending on whether the structure would use PV or concentrating solar technologies.
Hoyt added that “given the way NASA is funded, SpiderFab is three years to five years out. We will have to develop our process incrementally and demonstrate our reliability.”

By. Joao Peixe of Oilprice.com



0 Comments



Leave a Reply.

    Darrell James

    www.wmupstream.com

    Archives

    August 2014
    July 2014
    March 2014
    January 2014
    August 2013
    August 2012
    March 2012
    September 2011
    August 2011
    June 2011
    September 2010

    Categories

    All
    Corporate Responsibility
    Electric Vehicles
    Ev Charging
    Kenya School
    Knoxville's Innovation Valley
    LEED Certified Homes By State
    Nano Technology
    Passive Energy
    Photovoltaics
    Ppa
    Pv Investment Opportunities
    Solar UAV's
    Supermarket Energy Usage
    Sustainable Building Design
    Sustainable Design

    RSS Feed

Powered by Create your own unique website with customizable templates.